/*
ArduinoDRO + Tach V5.9
iGaging/AccuRemote Digital Scales Controller V3.3
Created 5 July 2014
Update 15 July 2014
Copyright (C) 2014 Yuriy Krushelnytskiy, http://www.yuriystoys.com
Updated 28 November 2014 by Ryszard Malinowski
http://www.rysium.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Version 2.b - Added support for tachometer on axis T with accurate timing
Version 3.0 - Added option to send rpm raw data (time and count)
Version 5.2 - Correction to retrieving scale sign bit.
Version 5.2 - Corrected scale frequency clock.
Version 5.2 - Added option to pre-scale tach reading compensating for more than one tach pulse per rotation.
Version 5.3 - Added option to average and round tach output values.
Version 5.3 - Added option to select max tach update frequency
Version 5.4 - Replace Yuriy's method of clocking scales with method written by Les Jones
Version 5.5 - Optimizing the scale reading logic using method written by Les Jones
Version 5.6 - Adding 4us delay between scale clock signal change and reading first axis data
Version 5.7 - Added option to smooth DRO reading by implementing weighted average with automatic smoothing factor
Version 5.8 - Correction to calculate average for scale X. Increase weighted average sample size to 32.
Version 5.9 - Reduce flickering on RPM display. Remove long delay in RPM displaying Zero after the rotation stops.
NOTE: This program supports pulse sensor to measure rpm.
Configuration parameters:
SCALE__ENABLED
Defines if DRO functionality on axis should be supported.
If supported DRO scale should be connected to I/O pin defined in constant "DataPin" and
DRO data is sent to serial port with corresponding axis prefix (X, Y, Z or W)
Clock pin is common for all scales should be connected to I/O pin defined in constant "clockPin"
Possible values:
1 = DRO functionality on axis is supported
0 = DRO functionality on axis is not supported
Default value = 1
SCALE_CLK_PIN
Defines the I/O pin where clock signal for all DRO scales is connected
Possible values:
integer number between 2 and 13
Default value = 2
SCALE__PIN
Defines the I/O pin where DRO data signal for selected scale is connected
Possible values:
integer number between 2 and 13
Default values = 3, 4, 5, 6 (for corresponding axis X, Y, Z and W)
SCALE__AVERAGE_ENABLED
Defines if DRO reading should be averaged using weighted average calculation with automating smoothing factor.
If average is enabled the reading is much more stable without "jumping" and "flickering" when the scale "can't decide" on the value.
Note: This value is not used when corresponding SCALE__ENABLED is 0
Possible values:
0 = exact measured from the scale is sent
1 = scale reading averaged using weighted average calculation with automatic smoothing factor
Default value = 1
AXIS_AVERAGE_COUNT
Defines the number of last DRO readings that will be used to calculate weighted average for DRO.
For machines with power feed on any axis change this value to lower number i.e. 8 or 16.
Possible values:
integer number between 4 and 32
Recommended values:
16 for machines with power feed
32 for all manual machines
Default value = 24
TACH_ENABLED
Defines if tach sensor functionality should be supported.
If supported tach sensor should be connected to I/O pin defined in constant "tachPin" and
rpm value is sent to serial port with axis prefix "T"
Possible values:
1 = tach sensor functionality is supported
0 = tach sensor functionality is not supported
Default value = 1
TACH_PRESCALE
Defines how many tach pulses per one revolution the sensor sends.
For example if tach sensor uses two magnets on the shaft the sensor will generate two pulses per revolution.
This can be used to get better resolution and faster response time for very low rpm
Note: This value is not used when TACH_RAW_DATA_FORMAT is enabled
Possible values:
any integer number greater than 0
Default value = 1
TACH_AVERAGE_COUNT
Defines the number of last tach readings that will be used to calculate average tach rpm.
If you want to send measured rpm instead of average rpm set this value to 1.
Note: This value is not used when TACH_RAW_DATA_FORMAT is enabled.
It is recommended to set this value 2 times or more of TACH_PRESCALE value.
For example: if TACH_PRESCALE = 4, set TACH_AVERAGE_COUNT = 8
Possible values:
1 = exact measured tach reading is sent
any integer number greater than 1 - average tach reading is sent
Default value = 6
TACH_ROUND
Defines if tach reading should be rounded to the nearest 1% of current measured rpm.
If rounding is enabled the reading is rounded by 1% of current rpm.
For example measured rpm between 950 and 1049 will be rounded to the nearest 10 rpm (reporting 950, 960, 970 etc.)
Note: This value is not used when TACH_RAW_DATA_FORMAT is enabled
Possible values:
0 = exact measured tach reading is sent
1 = tach reading is rounded to the nearest 1% of measured rpm
Default value = 1
TACH_RAW_DATA_FORMAT
Defines the format of tach data sent to serial port.
Note: when rad data format is used, then TACH_PRESCALE, TACH_AVERAGE_COUNT and TACH_ROUND are ignored
Possible values:
1 = tach data is sent in raw (two values) format: T/;
0 = tach data is sent in single value format: T;
Default value = 0
MIN_RPM_DELAY
Defines the delay (in milliseconds) in showing 0 when rotation stops. If rpm is so low and time between tach pulse
changes longer than this value, value zero rpm ("T0;") will be sent to the serial port.
Note: this number will determine the slowest rpm that can be measured. In order to measure smaller rpm I suggest
to use a sensor with more than one "ticks per revolution" (for example hall sensor with two or more magnets).
The number of "ticks per revolution" should be set in tachometer setting in Android app.
Possible values:
any integer number greater than 0
Default value = 1200 (the minimum rpm measured will be 50 rpm)
INPUT_TACH_PIN
Defines the I/O pin where tach sensor signal is connected
Possible values:
integer number between 2 and 13
Default value = 7
TACH_LED_PIN
Defines the I/O pin where the tach LED feedback is connected.
Tach LED feedback indicates the status of tachPin for debugging purposes
Possible values:
integer number between 2 and 13
Default value = 13 (on-board LED)
UART_BAUD_RATE
Defines the serial port baud rate. Make sure it matches the Bluetooth module's baud rate.
Recommended value:
1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
Default value = 9600
UPDATE_FREQUENCY
Defines the Frequency in Hz (number of timer per second) the scales are read and the data is sent to the application.
Possible values:
any integer number between 1 and 64
Default value = 24
TACH_UPDATE_FREQUENCY
Defines the max Frequency in Hz (number of timer per second) the tach output is sent to the application.
Note: This value must be a divider of UPDATE_FREQUENCY that would result zero reminder.
For example for UPDATE_FREQUENCY = 24 valid TACH_UPDATE_FREQUENCY are: 1, 2, 3, 4, 6, 8, 12 and 24
Possible values:
any integer number between 1 and UPDATE_FREQUENCY
Default value = 4
*/
// DRO config (if axis is not connected change in the corresponding constant value from "1" to "0")
#define SCALE_X_ENABLED 1
#define SCALE_Y_ENABLED 1
#define SCALE_Z_ENABLED 1
#define SCALE_W_ENABLED 1
// I/O ports config (change pin numbers if DRO, Tach sensor or Tach LED feedback is connected to different ports)
#define SCALE_CLK_PIN 2
#define SCALE_X_PIN 3
#define SCALE_Y_PIN 4
#define SCALE_Z_PIN 5
#define SCALE_W_PIN 6
// DRO rounding On/Off (if not enabled change in the corresponding constant value from "1" to "0")
#define SCALE_X_AVERAGE_ENABLED 1
#define SCALE_Y_AVERAGE_ENABLED 1
#define SCALE_Z_AVERAGE_ENABLED 1
#define SCALE_W_AVERAGE_ENABLED 1
// DRO rounding sample size. Change it to 16 for machines with power feed
#define AXIS_AVERAGE_COUNT 24
// System config (if Tach is not connected change in the corresponding constant value from "1" to "0")
#define TACH_ENABLED 1
// Tach pre-scale value (number of tach sensor pulses per revolution)
#define TACH_PRESCALE 1
// Number of tach measurements to average
#define TACH_AVERAGE_COUNT 6
// This is 1% rounding for tachometer display (set to 0 to disable)
#define TACH_ROUND 1
// Tach data format
#define TACH_RAW_DATA_FORMAT 0 // single value format: T;
// Tach RPM config
#define MIN_RPM_DELAY 1200 // 1.2 sec calculates to low range = 50 rpm.
#define INPUT_TACH_PIN 7
#define TACH_LED_PIN 13
// General Settings
#define UART_BAUD_RATE 9600 // Set this so it matches the BT module's BAUD rate
#define UPDATE_FREQUENCY 24 // Frequency in Hz (number of timer per second the scales are read and the data is sent to the application)
#define TACH_UPDATE_FREQUENCY 4 // Max Frequency in Hz (number of timer per second) the tach output is sent to the application
//---END OF CONFIGURATION PARAMETERS ---
//---DO NOT CHANGE THE CODE BELOW UNLESS YOU KNOW WHAT YOU ARE DOING ---
/* iGaging Clock Settings (do not change) */
#define SCALE_CLK_PULSES 21 //iGaging and Accuremote scales use 21 bit format
#define SCALE_CLK_FREQUENCY 9000 //iGaging scales run at about 9-10KHz
#define SCALE_CLK_DUTY 20 // iGaging scales clock run at 20% PWM duty (22us = ON out of 111us cycle)
/* weighted average constants */
#define FILTER_SLOW_EMA AXIS_AVERAGE_COUNT // Slow movement EMA
#define FILTER_FAST_EMA 2 // Fast movement EMA
#if (SCALE_X_ENABLED > 0) || (SCALE_Y_ENABLED > 0) || (SCALE_Z_ENABLED > 0) || (SCALE_W_ENABLED > 0)
#define DRO_ENABLED 1
#else
#define DRO_ENABLED 0
#endif
#if (SCALE_X_AVERAGE_ENABLED > 0) || (SCALE_Y_AVERAGE_ENABLED > 0) || (SCALE_Z_AVERAGE_ENABLED > 0) || (SCALE_W_AVERAGE_ENABLED > 0)
#define SCALE_AVERAGE_ENABLED 1
#else
#define SCALE_AVERAGE_ENABLED 0
#endif
// Define registers and pins for ports
#if SCALE_CLK_PIN < 8
#define CLK_PIN_BIT SCALE_CLK_PIN
#define SCALE_CLK_DDR DDRD
#define SCALE_CLK_OUTPUT_PORT PORTD
#else
#define CLK_PIN_BIT (SCALE_CLK_PIN - 8)
#define SCALE_CLK_DDR DDRB
#define SCALE_CLK_OUTPUT_PORT PORTB
#endif
#if SCALE_X_PIN < 8
#define X_PIN_BIT SCALE_X_PIN
#define X_DDR DDRD
#define X_INPUT_PORT PIND
#else
#define X_PIN_BIT (SCALE_X_PIN - 8)
#define X_DDR DDRB
#define X_INPUT_PORT PINB
#endif
#if SCALE_Y_PIN < 8
#define Y_PIN_BIT SCALE_Y_PIN
#define Y_DDR DDRD
#define Y_INPUT_PORT PIND
#else
#define Y_PIN_BIT (SCALE_Y_PIN - 8)
#define Y_DDR DDRB
#define Y_INPUT_PORT PINB
#endif
#if SCALE_Z_PIN < 8
#define Z_PIN_BIT SCALE_Z_PIN
#define Z_DDR DDRD
#define Z_INPUT_PORT PIND
#else
#define Z_PIN_BIT (SCALE_Z_PIN - 8)
#define Z_DDR DDRB
#define Z_INPUT_PORT PINB
#endif
#if SCALE_W_PIN < 8
#define W_PIN_BIT SCALE_W_PIN
#define W_DDR DDRD
#define W_INPUT_PORT PIND
#else
#define W_PIN_BIT (SCALE_W_PIN - 8)
#define W_DDR DDRB
#define W_INPUT_PORT PINB
#endif
// Define tach interrupt for selected pin
#if INPUT_TACH_PIN == 2
#define TACH_PIN_BIT 2
#define TACH_DDR DDRD
#define TACH_INPUT_PORT PIND
#define TACH_INTERRUPT_VECTOR PCINT2_vect
#define TACH_INTERRUPT_REGISTER PCIE2
#define TACH_INTERRUPT_MASK PCMSK2
#define TACH_INTERRUPT_PIN PCINT18
#elif INPUT_TACH_PIN == 3
#define TACH_PIN_BIT 3
#define TACH_DDR DDRD
#define TACH_INPUT_PORT PIND
#define TACH_INTERRUPT_VECTOR PCINT2_vect
#define TACH_INTERRUPT_REGISTER PCIE2
#define TACH_INTERRUPT_MASK PCMSK2
#define TACH_INTERRUPT_PIN PCINT19
#elif INPUT_TACH_PIN == 4
#define TACH_PIN_BIT 4
#define TACH_DDR DDRD
#define TACH_INPUT_PORT PIND
#define TACH_INTERRUPT_VECTOR PCINT2_vect
#define TACH_INTERRUPT_REGISTER PCIE2
#define TACH_INTERRUPT_MASK PCMSK2
#define TACH_INTERRUPT_PIN PCINT20
#elif INPUT_TACH_PIN == 5
#define TACH_PIN_BIT 5
#define TACH_DDR DDRD
#define TACH_INPUT_PORT PIND
#define TACH_INTERRUPT_VECTOR PCINT2_vect
#define TACH_INTERRUPT_REGISTER PCIE2
#define TACH_INTERRUPT_MASK PCMSK2
#define TACH_INTERRUPT_PIN PCINT21
#elif INPUT_TACH_PIN == 6
#define TACH_PIN_BIT 6
#define TACH_DDR DDRD
#define TACH_INPUT_PORT PIND
#define TACH_INTERRUPT_VECTOR PCINT2_vect
#define TACH_INTERRUPT_REGISTER PCIE2
#define TACH_INTERRUPT_MASK PCMSK2
#define TACH_INTERRUPT_PIN PCINT22
#elif INPUT_TACH_PIN == 7
#define TACH_PIN_BIT 7
#define TACH_DDR DDRD
#define TACH_INPUT_PORT PIND
#define TACH_INTERRUPT_VECTOR PCINT2_vect
#define TACH_INTERRUPT_REGISTER PCIE2
#define TACH_INTERRUPT_MASK PCMSK2
#define TACH_INTERRUPT_PIN PCINT23
#elif INPUT_TACH_PIN == 8
#define TACH_PIN_BIT 0
#define TACH_DDR DDRB
#define TACH_INPUT_PORT PINB
#define TACH_INTERRUPT_VECTOR PCINT0_vect
#define TACH_INTERRUPT_REGISTER PCIE0
#define TACH_INTERRUPT_MASK PCMSK0
#define TACH_INTERRUPT_PIN PCINT0
#elif INPUT_TACH_PIN == 9
#define TACH_PIN_BIT 1
#define TACH_DDR DDRB
#define TACH_INPUT_PORT PINB
#define TACH_INTERRUPT_VECTOR PCINT0_vect
#define TACH_INTERRUPT_REGISTER PCIE0
#define TACH_INTERRUPT_MASK PCMSK0
#define TACH_INTERRUPT_PIN PCINT1
#elif INPUT_TACH_PIN == 10
#define TACH_PIN_BIT 2
#define TACH_DDR DDRB
#define TACH_INPUT_PORT PINB
#define TACH_INTERRUPT_VECTOR PCINT0_vect
#define TACH_INTERRUPT_REGISTER PCIE0
#define TACH_INTERRUPT_MASK PCMSK0
#define TACH_INTERRUPT_PIN PCINT2
#elif INPUT_TACH_PIN == 11
#define TACH_PIN_BIT 3
#define TACH_DDR DDRB
#define TACH_INPUT_PORT PINB
#define TACH_INTERRUPT_VECTOR PCINT0_vect
#define TACH_INTERRUPT_REGISTER PCIE0
#define TACH_INTERRUPT_MASK PCMSK0
#define TACH_INTERRUPT_PIN PCINT3
#elif INPUT_TACH_PIN == 12
#define TACH_PIN_BIT 4
#define TACH_DDR DDRB
#define TACH_INPUT_PORT PINB
#define TACH_INTERRUPT_VECTOR PCINT0_vect
#define TACH_INTERRUPT_REGISTER PCIE0
#define TACH_INTERRUPT_MASK PCMSK0
#define TACH_INTERRUPT_PIN PCINT4
#elif INPUT_TACH_PIN == 13
#define TACH_PIN_BIT 5
#define TACH_DDR DDRB
#define TACH_INPUT_PORT PINB
#define TACH_INTERRUPT_VECTOR PCINT0_vect
#define TACH_INTERRUPT_REGISTER PCIE0
#define TACH_INTERRUPT_MASK PCMSK0
#define TACH_INTERRUPT_PIN PCINT5
#endif
#if TACH_LED_PIN < 8
#define LED_PIN_BIT TACH_LED_PIN
#define LED_DDR DDRD
#define LED_OUTPUT_PORT PORTD
#else
#define LED_PIN_BIT (TACH_LED_PIN - 8)
#define LED_DDR DDRB
#define LED_OUTPUT_PORT PORTB
#endif
// Some constants calculated here
unsigned long const minRpmTime = (((long) MIN_RPM_DELAY) * ((long) 1000));
long const longMax = __LONG_MAX__;
long const longMin = (- __LONG_MAX__ - (long) 1);
long const slowSc = ((long) 2000) / (((long) FILTER_SLOW_EMA) + ((long) 1));
long const fastSc = ((long) 20) / (((long) FILTER_FAST_EMA) + ((long) 1));
#if TACH_UPDATE_FREQUENCY == UPDATE_FREQUENCY
int const tachUpdateFrequencyCounterLimit = 1;
#else
int const tachUpdateFrequencyCounterLimit = (((long) UPDATE_FREQUENCY) / ((long) TACH_UPDATE_FREQUENCY));
#endif
int const updateFrequencyCounterLimit = (int) (((unsigned long) SCALE_CLK_FREQUENCY) /((unsigned long) UPDATE_FREQUENCY));
int const clockCounterLimit = (int) (((unsigned long) 2000000) / (unsigned long) SCALE_CLK_FREQUENCY) - 10;
int const scaleClockDutyLimit = (int) (((unsigned long) 20000) * ((unsigned long) SCALE_CLK_DUTY) / (unsigned long) SCALE_CLK_FREQUENCY);
//variables that will store tach info and status
volatile unsigned long tachInterruptTimer;
volatile unsigned long tachInterruptRotationCount;
volatile unsigned long tachTimerStart;
//variables that will store the readout output
volatile unsigned long tachReadoutRotationCount;
volatile unsigned long tachReadoutMicrosec;
volatile unsigned long tachReadoutRpm;
#if TACH_AVERAGE_COUNT > 1
volatile unsigned long tachLastRead[TACH_AVERAGE_COUNT];
volatile int tachLastReadPosition;
#endif
volatile int tachUpdateFrequencyCounter;
volatile boolean sendTachData;
//variables that will store the DRO readout
volatile boolean tickTimerFlag;
volatile int updateFrequencyCounter;
// Axis count
#if SCALE_X_ENABLED > 0
volatile long xValue;
volatile long xReportedValue;
#endif
#if SCALE_X_AVERAGE_ENABLED > 0
volatile long axisLastReadX[AXIS_AVERAGE_COUNT];
volatile int axisLastReadPositionX;
volatile long axisAMAValueX;
#endif
#if SCALE_Y_ENABLED > 0
volatile long yValue;
volatile long yReportedValue;
#endif
#if SCALE_Y_AVERAGE_ENABLED > 0
volatile long axisLastReadY[AXIS_AVERAGE_COUNT];
volatile int axisLastReadPositionY;
volatile long axisAMAValueY;
#endif
#if SCALE_Z_ENABLED > 0
volatile long zValue;
volatile long zReportedValue;
#endif
#if SCALE_Z_AVERAGE_ENABLED > 0
volatile long axisLastReadZ[AXIS_AVERAGE_COUNT];
volatile int axisLastReadPositionZ;
volatile long axisAMAValueZ;
#endif
#if SCALE_W_ENABLED > 0
volatile long wValue;
volatile long wReportedValue;
#endif
#if SCALE_W_AVERAGE_ENABLED > 0
volatile long axisLastReadW[AXIS_AVERAGE_COUNT];
volatile int axisLastReadPositionW;
volatile long axisAMAValueW;
#endif
//The setup function is called once at startup of the sketch
void setup()
{
cli();
sendTachData = false;
tickTimerFlag = false;
updateFrequencyCounter = 0;
// Initialize DRO values
#if DRO_ENABLED > 0
// clock pin should be set as output
SCALE_CLK_DDR |= _BV(CLK_PIN_BIT);
// set the clock pin to low
SCALE_CLK_OUTPUT_PORT &= ~_BV(CLK_PIN_BIT);
//data pins should be set as inputs
#if SCALE_X_ENABLED > 0
X_DDR &= ~_BV(X_PIN_BIT);
xValue = 0L;
xReportedValue = 0L;
#if SCALE_X_AVERAGE_ENABLED > 0
initializeAxisAverage(axisLastReadX, axisLastReadPositionX, axisAMAValueX);
#endif
#endif
#if SCALE_Y_ENABLED > 0
Y_DDR &= ~_BV(Y_PIN_BIT);
yValue = 0L;
yReportedValue = 0L;
#if SCALE_Y_AVERAGE_ENABLED > 0
initializeAxisAverage(axisLastReadY, axisLastReadPositionY, axisAMAValueY);
#endif
#endif
#if SCALE_Z_ENABLED > 0
Z_DDR &= ~_BV(Z_PIN_BIT);
zValue = 0L;
zReportedValue = 0L;
#if SCALE_Z_AVERAGE_ENABLED > 0
initializeAxisAverage(axisLastReadZ, axisLastReadPositionZ, axisAMAValueZ);
#endif
#endif
#if SCALE_W_ENABLED > 0
W_DDR &= ~_BV(W_PIN_BIT);
wValue = 0L;
wReportedValue = 0L;
#if SCALE_W_AVERAGE_ENABLED > 0
initializeAxisAverage(axisLastReadW, axisLastReadPositionW, axisAMAValueW);
#endif
#endif
#endif
//initialize tach values
#if TACH_ENABLED > 0
// Setup tach port for input
TACH_DDR &= ~_BV(TACH_PIN_BIT);
LED_DDR |= _BV(LED_PIN_BIT);
// Set LED pin to LOW
LED_OUTPUT_PORT &= ~_BV(LED_PIN_BIT);
// Setup interrupt on tach pin
PCICR |= _BV(TACH_INTERRUPT_REGISTER);
TACH_INTERRUPT_MASK |= _BV(TACH_INTERRUPT_PIN);
// Reset tach counter and timer
tachInterruptRotationCount = 0;
tachInterruptTimer = micros();
tachTimerStart = tachInterruptTimer;
tachReadoutRotationCount = 0;
tachReadoutMicrosec = 0;
#if TACH_AVERAGE_COUNT > 1
for (tachLastReadPosition = 0; tachLastReadPosition < (int) TACH_AVERAGE_COUNT; tachLastReadPosition++) {
tachLastRead[tachLastReadPosition] = 0;
}
tachLastReadPosition = TACH_AVERAGE_COUNT - 1;
#endif
tachUpdateFrequencyCounter = 0;
#endif
//initialize serial port
Serial.begin(UART_BAUD_RATE);
//initialize timers
setupClkTimer();
sei();
}
// The loop function is called in an endless loop
void loop()
{
if (tickTimerFlag) {
tickTimerFlag = false;
#if DRO_ENABLED > 0
//print DRO positions to the serial port
#if SCALE_X_ENABLED > 0
#if SCALE_X_AVERAGE_ENABLED > 0
scaleValueRounded(xReportedValue, axisLastReadX, axisLastReadPositionX, axisAMAValueX);
#endif
Serial.print(F("X"));
Serial.print((long)xReportedValue);
Serial.print(F(";"));
#endif
#if SCALE_Y_ENABLED > 0
#if SCALE_Y_AVERAGE_ENABLED > 0
scaleValueRounded(yReportedValue, axisLastReadY, axisLastReadPositionY, axisAMAValueY);
#endif
Serial.print(F("Y"));
Serial.print((long)yReportedValue);
Serial.print(F(";"));
#endif
#if SCALE_Z_ENABLED > 0
#if SCALE_Z_AVERAGE_ENABLED > 0
scaleValueRounded(zReportedValue, axisLastReadZ, axisLastReadPositionZ, axisAMAValueZ);
#endif
Serial.print(F("Z"));
Serial.print((long)zReportedValue);
Serial.print(F(";"));
#endif
#if SCALE_W_ENABLED > 0
#if SCALE_W_AVERAGE_ENABLED > 0
scaleValueRounded(wReportedValue, axisLastReadW, axisLastReadPositionW, axisAMAValueW);
#endif
Serial.print(F("W"));
Serial.print((long)wReportedValue);
Serial.print(F(";"));
#endif
#endif
// print Tach rpm to serial port
#if TACH_ENABLED > 0
// Calculate tach data
sendTachData = sendTachOutputData() || sendTachData;
// Check tach reporting frequency
tachUpdateFrequencyCounter++;
if (tachUpdateFrequencyCounter >= tachUpdateFrequencyCounterLimit) {
tachUpdateFrequencyCounter = 0;
// Output tach data
if (sendTachData) {
sendTachData = false;
Serial.print(F("T"));
#if TACH_RAW_DATA_FORMAT > 0
Serial.print((unsigned long)tachReadoutMicrosec);
Serial.print(F("/"));
Serial.print((unsigned long)tachReadoutRotationCount);
#else
Serial.print((unsigned long)tachReadoutRpm);
#endif
Serial.print(F(";"));
}
}
#endif
}
}
//initializes clock timer
void setupClkTimer()
{
updateFrequencyCounter = 0;
TCCR2A = 0; // set entire TCCR2A register to 0
TCCR2B = 0; // same for TCCR2B
// set compare match registers
#if DRO_ENABLED > 0
OCR2A = scaleClockDutyLimit; // default 44 = 22us
#else
OCR2A = clockCounterLimit - 1;
#endif
OCR2B = clockCounterLimit; // default 222 = 111us
// turn on Fast PWM mode
TCCR2A |= _BV(WGM21) | _BV(WGM20);
// Set CS21 bit for 8 prescaler //CS20 for no prescaler
TCCR2B |= _BV(CS21);
//initialize counter value to start at low pulse
#if DRO_ENABLED > 0
TCNT2 = scaleClockDutyLimit + 1;
#else
TCNT2 = 0;
#endif
// enable timer compare interrupt A and B
TIMSK2 |= _BV(OCIE2A) | _BV(OCIE2B);
}
/* Interrupt Service Routines */
// Timer 2 interrupt B ( Switches clock pin from low to high 21 times) at the end of clock counter limit
ISR(TIMER2_COMPB_vect) {
// Set counter back to zero
TCNT2 = 0;
#if DRO_ENABLED > 0
// Only set the clock high if updateFrequencyCounter less than 21
if (updateFrequencyCounter < SCALE_CLK_PULSES) {
// Set clock pin high
SCALE_CLK_OUTPUT_PORT |= _BV(CLK_PIN_BIT);
}
#endif
}
// Timer 2 interrupt A ( Switches clock pin from high to low) at the end of clock PWM Duty counter limit
ISR(TIMER2_COMPA_vect)
{
#if DRO_ENABLED > 0
// Contorl the scale clock for only first 21 loops
if (updateFrequencyCounter < SCALE_CLK_PULSES) {
// Set clock low if high and then delay 2us
if (SCALE_CLK_OUTPUT_PORT & _BV(CLK_PIN_BIT)) {
SCALE_CLK_OUTPUT_PORT &= ~_BV(CLK_PIN_BIT);
TCNT2 = scaleClockDutyLimit - 4;
return;
}
// read the pin state and shift it into the appropriate variables
// Logic by Les Jones:
// If data pin is HIGH set bit 20th of the axis value to '1'. Then shift axis value one bit to the right
// This is called 20 times (for bits received from 0 to 19)
if (updateFrequencyCounter < SCALE_CLK_PULSES - 1) {
#if SCALE_X_ENABLED > 0
if (X_INPUT_PORT & _BV(X_PIN_BIT))
xValue |= ((long)0x00100000 );
xValue >>= 1;
#endif
#if SCALE_Y_ENABLED > 0
if (Y_INPUT_PORT & _BV(Y_PIN_BIT))
yValue |= ((long)0x00100000 );
yValue >>= 1;
#endif
#if SCALE_Z_ENABLED > 0
if (Z_INPUT_PORT & _BV(Z_PIN_BIT))
zValue |= ((long)0x00100000 );
zValue >>= 1;
#endif
#if SCALE_W_ENABLED > 0
if (W_INPUT_PORT & _BV(W_PIN_BIT))
wValue |= ((long)0x00100000 );
wValue >>= 1;
#endif
} else if (updateFrequencyCounter == SCALE_CLK_PULSES - 1) {
//If 21-st bit is 'HIGH' inverse the sign of the axis readout
#if SCALE_X_ENABLED > 0
if (X_INPUT_PORT & _BV(X_PIN_BIT))
xValue |= ((long)0xfff00000);
xReportedValue = xValue;
xValue = 0L;
#endif
#if SCALE_Y_ENABLED > 0
if (Y_INPUT_PORT & _BV(Y_PIN_BIT))
yValue |= ((long)0xfff00000);
yReportedValue = yValue;
yValue = 0L;
#endif
#if SCALE_Z_ENABLED > 0
if (Z_INPUT_PORT & _BV(Z_PIN_BIT))
zValue |= ((long)0xfff00000);
zReportedValue = zValue;
zValue = 0L;
#endif
#if SCALE_W_ENABLED > 0
if (W_INPUT_PORT & _BV(W_PIN_BIT))
wValue |= ((long)0xfff00000);
wReportedValue = wValue;
wValue = 0L;
#endif
// Tell the main loop, that it's time to sent data
tickTimerFlag = true;
}
}
#else
if (updateFrequencyCounter == 0) {
// Tell the main loop, that it's time to sent data
tickTimerFlag = true;
}
#endif
updateFrequencyCounter++;
// Start of next cycle
if ( updateFrequencyCounter >= updateFrequencyCounterLimit) {
updateFrequencyCounter = 0;
}
}
#if DRO_ENABLED > 0
#if SCALE_AVERAGE_ENABLED > 0
inline void initializeAxisAverage(volatile long axisLastRead[], volatile int &axisLastReadPosition, volatile long &axisAMAValue) {
for (axisLastReadPosition = 0; axisLastReadPosition < (int) AXIS_AVERAGE_COUNT; axisLastReadPosition++) {
axisLastRead[axisLastReadPosition] = 0;
}
axisLastReadPosition = 0;
axisAMAValue = 0;
}
inline void scaleValueRounded(volatile long &ReportedValue, volatile long axisLastRead[], volatile int &axisLastReadPosition, volatile long &axisAMAValue)
{
int last_pos;
int first_pos;
int prev_pos;
int filter_pos;
long dir;
long minValue = longMax;
long maxValue = longMin;
long volatility = 0;
long valueRange;
long ssc;
long constant;
long delta;
// Save current read and increment position
axisLastRead[axisLastReadPosition] = ReportedValue;
last_pos = axisLastReadPosition;
axisLastReadPosition++;
if (axisLastReadPosition == (int) AXIS_AVERAGE_COUNT) {
axisLastReadPosition = 0;
}
first_pos = axisLastReadPosition;
dir = (axisLastRead[first_pos] - axisLastRead[last_pos]) * ((long) 100);
// Calculate the volatility in the counts by taking the sum of the differences
prev_pos = first_pos;
for (filter_pos = (first_pos + 1) % AXIS_AVERAGE_COUNT;
filter_pos != first_pos;
filter_pos = (filter_pos + 1) % AXIS_AVERAGE_COUNT)
{
minValue = MIN(minValue, axisLastRead[filter_pos]);
maxValue = MAX(maxValue, axisLastRead[filter_pos]);
volatility += ABS(axisLastRead[filter_pos] - axisLastRead[prev_pos]);
prev_pos = filter_pos;
}
// Just return the read if there is no volatility to avoid divide by 0
if (volatility == (long) 0)
{
axisAMAValue = axisLastRead[last_pos] * ((long) 100);
return;
}
// If the last AMA is not within twice the sample range, then assume the position jumped
// and reset the AMA to the current read
maxValue = maxValue * ((long) 100);
minValue = minValue * ((long) 100);
valueRange = maxValue - minValue;
if (axisAMAValue > maxValue + valueRange + ((long) 100) ||
axisAMAValue < minValue - valueRange - ((long) 100))
{
axisAMAValue = axisLastRead[last_pos] * ((long) 100);
return;
}
// Calculate the smoothing constant
ssc = (ABS(dir / volatility) * fastSc) + slowSc;
constant = (ssc * ssc) / ((long) 10000);
// Calculate the new average
delta = axisLastRead[last_pos] - (axisAMAValue / ((long) 100));
axisAMAValue = axisAMAValue + constant * delta;
ReportedValue = (axisAMAValue + ((long) 50)) / ((long) 100);
return;
}
inline long MIN(long value1, long value2){
if(value1 > value2) {
return value2;
} else {
return value1;
}
}
inline long MAX(long value1, long value2){
if(value1 > value2) {
return value1;
} else {
return value2;
}
}
inline long ABS(long value){
if(value < 0) {
return -value;
} else {
return value;
}
}
#endif
#endif
// Calculate the tach rpm
#if TACH_ENABLED > 0
inline boolean sendTachOutputData()
{
unsigned long microSeconds;
unsigned long tachRotationCount;
unsigned long tachTimer;
unsigned long currentMicros;
// Read data from the last interrupt (stop interupts to read a pair in sync)
cli();
tachRotationCount = tachInterruptRotationCount;
tachInterruptRotationCount = 0;
tachTimer = tachInterruptTimer;
sei();
// reset values and ignore this readout if clock or rotation counter overlapses
if (tachTimer < tachTimerStart) {
tachTimerStart = tachTimer;
return false;
}
// We have at least one tick on rpm sensor so calculate the time between ticks
if (tachRotationCount != 0) {
tachReadoutRotationCount = tachRotationCount;
tachReadoutMicrosec = tachTimer - tachTimerStart;
tachTimerStart = tachTimer;
// if no ticks on rpm sensor...
} else {
currentMicros = micros();
// reset timer if clock overlapses
if (currentMicros < tachTimerStart) {
tachTimerStart = 0;
return false;
} else {
// if no pulses for longer than minRpmTime then set rpm to zero
microSeconds = currentMicros - tachTimerStart;
if (microSeconds > minRpmTime ) {
tachReadoutRotationCount = 0;
tachReadoutMicrosec = 0;
} else {
return false;
}
}
}
#if TACH_RAW_DATA_FORMAT == 0
// Calculate RPM
if (tachReadoutRotationCount == 0) {
tachReadoutRpm = 0;
} else {
unsigned long averageTime = tachReadoutMicrosec/tachReadoutRotationCount;
// Ignore when time is zero
if (averageTime == 0) {
return false;
} else {
tachReadoutRpm = ((unsigned long) 600000000 / averageTime);
tachReadoutRpm = ((unsigned long) tachReadoutRpm/TACH_PRESCALE) + 5;
tachReadoutRpm = ((unsigned long) tachReadoutRpm / 10);
}
}
#if TACH_AVERAGE_COUNT > 1
// calculate Average RPM
unsigned long tachReadSum;
unsigned long tachLastReadRpm;
int readCounter;
int readCounted;
// Save last reading
tachLastReadRpm = tachLastRead[tachLastReadPosition];
// Increment tachLastReadPosition
tachLastReadPosition++;
if (tachLastReadPosition == (int) TACH_AVERAGE_COUNT) {
tachLastReadPosition = 0;
}
// Save current read
tachLastRead[tachLastReadPosition] = tachReadoutRpm;
// At least two consecutive measurements must be valid to calculate average
readCounted = 0;
tachReadSum = 0;
if (tachReadoutRpm != 0 && tachLastReadRpm != 0) {
// Calculate average read
for (readCounter = 0; readCounter < (int) TACH_AVERAGE_COUNT; readCounter++) {
if (tachLastRead[readCounter] != 0) {
tachReadSum = tachReadSum + tachLastRead[readCounter];
readCounted++;
}
}
}
if (readCounted != 0) {
tachReadoutRpm = ((unsigned long) tachReadSum / ((int) readCounted));
} else {
tachReadoutRpm = 0;
}
#endif
#if TACH_ROUND > 0
// calculate Rounded RPM
unsigned long tachReadRoundFactor;
// Determine rounding factor
tachReadRoundFactor = (unsigned long) ((tachReadoutRpm * 10)/((int) 100) + 5);
tachReadRoundFactor = ((unsigned long) tachReadRoundFactor/10);
if (tachReadRoundFactor == 0) {
tachReadRoundFactor = 1;
}
// Round result
tachReadoutRpm = ((unsigned long) ((tachReadoutRpm * 10)/tachReadRoundFactor) + 5);
tachReadoutRpm = ((unsigned long) tachReadoutRpm/10);
tachReadoutRpm = ((unsigned long) tachReadoutRpm * tachReadRoundFactor);
#endif
#endif
return true;
}
#endif
// Interrupt to read tach pin change
#if TACH_ENABLED > 0
ISR(TACH_INTERRUPT_VECTOR)
{
if (TACH_INPUT_PORT & _BV(TACH_PIN_BIT)) {
// record timestamp of change in port input
tachInterruptTimer = micros();
tachInterruptRotationCount++;
LED_OUTPUT_PORT |= _BV(LED_PIN_BIT);
} else {
// read tach port and output it to LED
LED_OUTPUT_PORT &= ~_BV(LED_PIN_BIT);
}
}
#endif